由于免费的在线百科全书具有大量内容,因此Wikipedia和Wikidata是许多自然语言处理(NLP)任务的关键,例如信息检索,知识基础构建,机器翻译,文本分类和文本摘要。在本文中,我们介绍了Wikides,这是一个新颖的数据集,用于为文本摘要问题提供Wikipedia文章的简短描述。该数据集由6987个主题上的80K英语样本组成。我们设置了一种两阶段的摘要方法 - 描述生成(I阶段)和候选排名(II阶段)作为一种依赖于转移和对比学习的强大方法。对于描述生成,与其他小规模的预训练模型相比,T5和BART表现出了优越性。通过将对比度学习与Beam Search的不同输入一起应用,基于度量的排名模型优于直接描述生成模型,在主题独立拆分和独立于主题的独立拆分中,最高可达22个胭脂。此外,第II期中的结果描述得到了人类评估的支持,其中45.33%以上,而I阶段的23.66%则支持针对黄金描述。在情感分析方面,生成的描述无法有效地从段落中捕获所有情感极性,同时从黄金描述中更好地完成此任务。自动产生的新描述减少了人类为创建它们的努力,并丰富了基于Wikidata的知识图。我们的论文对Wikipedia和Wikidata产生了实际影响,因为有成千上万的描述。最后,我们预计Wikides将成为从短段落中捕获显着信息的相关作品的有用数据集。策划的数据集可公开可用:https://github.com/declare-lab/wikides。
translated by 谷歌翻译
Trajectory-User Linking (TUL) is a relatively new mobility classification task in which anonymous trajectories are linked to the users who generated them. With applications ranging from personalized recommendations to criminal activity detection, TUL has received increasing attention over the past five years. While research has focused mainly on learning deep representations that capture complex spatio-temporal mobility patterns unique to individual users, we demonstrate that visit patterns are highly unique among users and thus simple heuristics applied directly to the raw data are sufficient to solve TUL. More specifically, we demonstrate that a single check-in per trajectory is enough to correctly predict the identity of the user up to 85% of the time. Moreover, by using a non-parametric classifier, we scale up TUL to over 100k users which is an increase over state-of-the-art by three orders of magnitude. Extensive empirical analysis on four real-world datasets (Brightkite, Foursquare, Gowalla and Weeplaces) compares our findings to state-of-the-art results, and more importantly validates our claim that TUL is easier than commonly believed.
translated by 谷歌翻译
目的:(1)开发深度学习算法,以识别3D光学相干断层扫描(OCT)扫描中的视神经头(ONH)的主要组织结构; (2)利用这些信息在健康,光盘博森(奇数)和乳头膜ONHS之间鲁棒地区分。由于高颅内压(51只眼)和健康对照(100只眼睛),这是一种横截面对比研究,由于高颅内压(51只眼睛),以及健康的对照(100只眼)。使用OCT获得ONH的3D扫描,然后加工以改善深层组织可见性。首先,使用984 B-Scans(从130只眼睛)开发了深度学习算法,以识别:主要的神经/结缔组织和奇数区域。使用骰子系数(DC)评估我们的算法的性能。在第2步骤中,使用1500Ct卷设计了一个分类算法(随机林),以严格从其德鲁森和普拉拉马那肿胀得分(来自细分)来执行3级分类(1:奇数,2:Papilledema,3:健康) )。为了评估性能,我们报告了每个类的接收器操作特征曲线(AUC)下的区域。我们的分割算法能够在存在时隔离神经和结缔组织和奇数区域。这是在测试集上的平均DC为0.93 $ 0.03的平均直流,相应于良好性能。分类是用高AUC的分类,即检测奇数,0.99美元0.01 0.01美元,用于检测Papilledema的0.99美元,0.98美元$ 0.02用于检测健康的ONH。我们的AI方法可以使用单个OCT扫描来准确地歧视奇数乳头。我们的分类表现非常出色,有需要在更大的人口中验证。我们的方法可能有可能建立10月作为神经眼科诊断成像的主干。
translated by 谷歌翻译